If it's not what You are looking for type in the equation solver your own equation and let us solve it.
14x^2=29x+15
We move all terms to the left:
14x^2-(29x+15)=0
We get rid of parentheses
14x^2-29x-15=0
a = 14; b = -29; c = -15;
Δ = b2-4ac
Δ = -292-4·14·(-15)
Δ = 1681
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1681}=41$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-29)-41}{2*14}=\frac{-12}{28} =-3/7 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-29)+41}{2*14}=\frac{70}{28} =2+1/2 $
| 6.4=t/5.5 | | 4-3t=-11 | | 56+x+55+80=180 | | 3x-14=6x+10x | | (5x-22)(8x=46) | | -6(3x-2)=2x-5-20x-7 | | 21/4x=81/2 | | (x-20)(4x-3)=180 | | 200+(2/9)*x=500 | | 3k^2-5k-28=0 | | 8^((x)/(17))=0.9 | | -15-9= | | h+12.5=12.5 | | 3(u-4)-4=-2(-8u+5)-5u) | | y=3(3)+4 | | -5=7-w | | 200+(2/9)x=500 | | x+24+25+135=180 | | t(1/30)=t(1/45) | | 8y-30-2y=6(y-5)D | | (Q-4)x4=8 | | 3b-12=-3 | | 3(y+5)=2y-4+yC | | -3(y+-11)=15 | | 2(x+2)-4x=8 | | -9h=30 | | 3(y+5)=2y-4+yB | | 8r-2r-4=14 | | 9(p-4=8 | | 15x-3=2x+6 | | 8r-2r=6 | | 49=-7(m-8) |